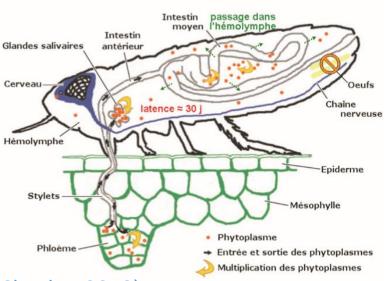
Etude de la dynamique spatiale de *Scaphoideus titanus*, vecteur de la Flavescence Dorée, dans l'agrosystème viticole savoyard

Présentation de la FREDON

- Organisme à vocation sanitaire reconnu par l'Etat, en santé des végétaux
- Création FREDON Rhône-Alpes en 1987
- Coordination des 8 sites départementaux
- Missions déléguées de service public (DRAAF-SRAL)

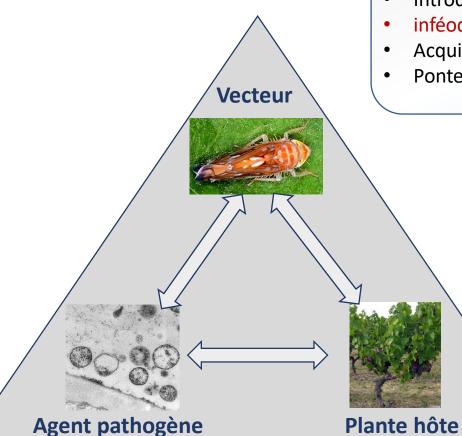
Activités:

- Lutte collective contre les organismes nuisibles règlementés (Sharka, Flavescence Dorée) Organisation de la prospection, contrôle des mesures de lutte
- Surveillance du territoire Contrôle plants issus de pépinières, suivi organismes non règlementés (black rot, mildiou, etc.), rédaction de BSV, modélisation
- Appui aux collectivités territoriales
 Application du plan Ecophyto II



Plan:

- I. Présentation de la Flavescence Dorée
- II. Contexte de l'étude
- III. Expérimentation sur le vignoble savoyard
- IV. Discussion et conclusion


Le pathosystème de la FD

(Chuche, 2010)

Phytoplasme de la FD

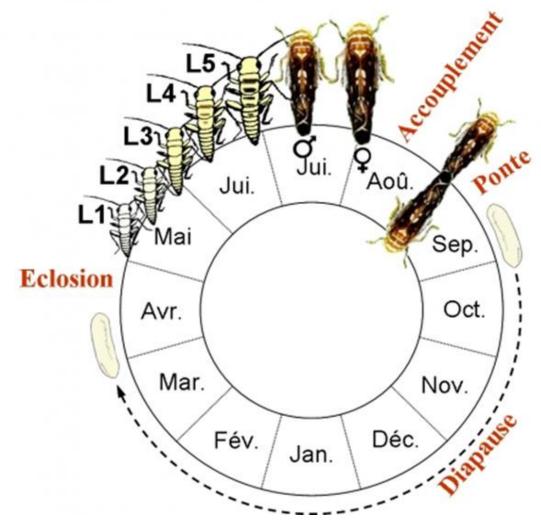
- Inféodé à la vigne
- Colonise tout cep via le phloème
- Bouche tubes criblés
- Entraine mort cep
- Différentes souches (FD1, FD2, FD3)

Scaphoideus titanus

- Insecte homoptère (famille Cicadellidae)
- Introduction dans les années 1950 (depuis EU)
- inféodé à la vigne = monophage (Vidano, 1964)
- Acquisition lors de la prise alimentaire (phloème)
- Ponte dans le cep de vigne

Vigne

- Cep = réservoir de phytoplasme à vie
- Cep = réservoir de nouveaux individusSt en N+1
- Assure la persistance de la FD d'une année sur l'autre


Environnement

Présentation de la Flavescence Dorée

Cycle de *Scaphoideus titanus*

Larves (2 à 5mm)

- Aptères
- Peu mobiles

Adultes (5mm)

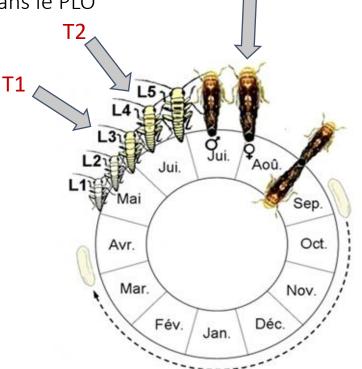
- Ailés
- Déplacement dans canopée vigne
- 50% déplacements dans 3m
- Peu de déplacements hors parcelle

Cycle de développement de St (Chuche, 2010)

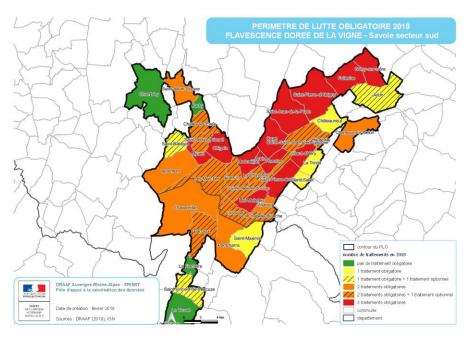
Cycle de la FD

(Caudwell, 1964), Images S. Grauby, Fréterive

Propagation épidémique de ceps en ceps par St infectieux /!\ Symptômes identiques à ceux du Bois noir → Analyse PCR


Lutte contre la FD

- Europe: Phytoplasme classé organisme de quarantaine (1993)
- France: Lutte obligatoire contre la FD (1994)


73% du vignoble français en périmètre de lutte (2017)

Arrêté ministériel du 19 décembre 2013 modifié

- → Surveillance annuelle collective des parcelles
- → Obligation d'arrachage ceps contaminés
- → Obligation de lutte contre le vecteur dans le PLO

T3

Exemple de périmètre de lutte obligatoire en Savoie (DRAAF, 2018)

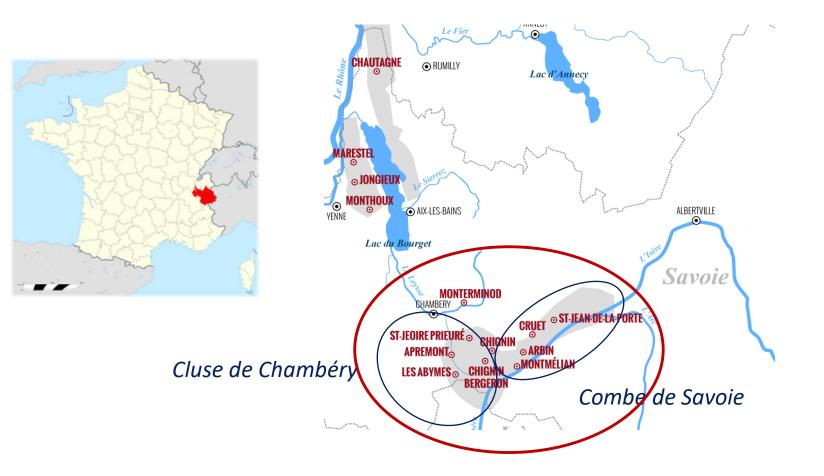
Vers une complexification de la lutte: impact de la vigne ensauvagée

(Image S. Grauby, Les Marches)

- Italie et Etats-Unis: Présence de larves (Pavan et al. 2012) (Beanland et al. 2006)
- Italie: Phytoplasme de la FD dans larves (Lessio et al. 2007)
- France: Projet FLADORISK de l'INRA: mesure risque vigne ensauvagée sur 4 vignobles
- → Aquitaine: risque élevé
- → PACA et Bourgogne: risque nul à quasi nul
- → Alsace: nul
- Pas de publication scientifique

Vers une complexification de la lutte: découverte de nouveaux vecteurs alternatifs

Orientus ishidae: Capable de transmettre FD à la vigne (Lessio et al. 2016) → FD1, FD2, FD3


Oncopsis alni: Capable de transmettre FD de l'aulne à la vigne (Maixner et al. 2000) → PGY

Dictyophara europaea : Capable de transmettre FD de la clématite à la vigne (Filippin et al. 2009) **→** FD3

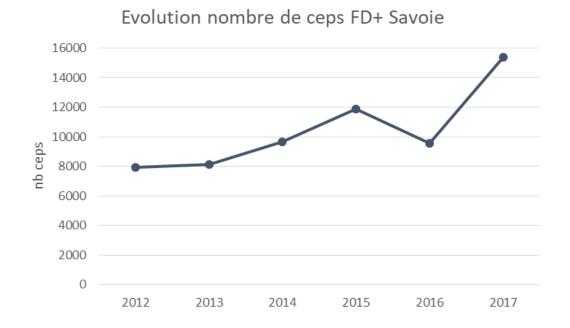
- Vecteurs polyphages, non inféodés à la vigne → Transmission occasionnelle
- Dissémination épidémique par *St* possible \rightarrow contamination chronique du vignoble

Le vignoble savoyard

- Vignoble de montagne (500m alt)
- 2150 ha
- Très morcelé
- Cépages autochtones
- 20 AOC vins de Savoie
- Pépinière viticole: 17% de la production française de plants

Présentation de la Flavescence Dorée

Contexte

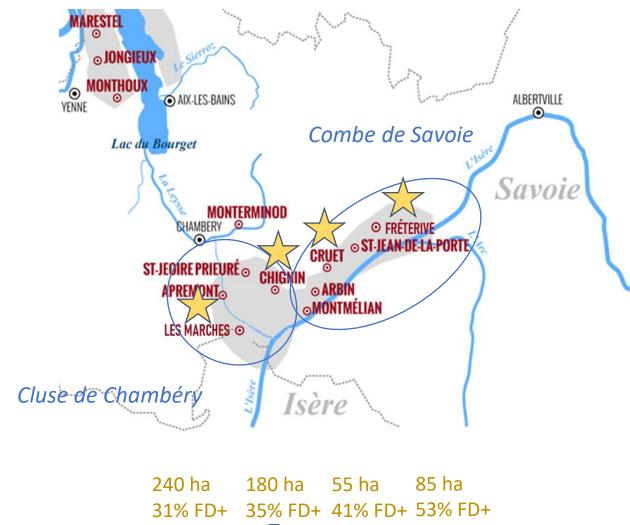

tude larvaire de *St*

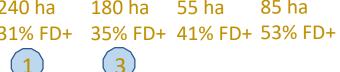
Suivi adultes

Etude moléculaire

La FD en Savoie

- Lutte collective depuis 2000
- Vignoble de plus en plus touché par la FD
- Connaissance de la dynamique de l'insecte insuffisante Suivi biologique de *Scaphoideus titanus*: 1 piège/ 20ha


Objectifs de l'étude:


- → Mieux comprendre la dynamique spatiale et temporelle de St
- → Mesurer le risque que représentent les vignes sauvages
- → Etudier la présence de vecteurs alternatifs sur le territoire

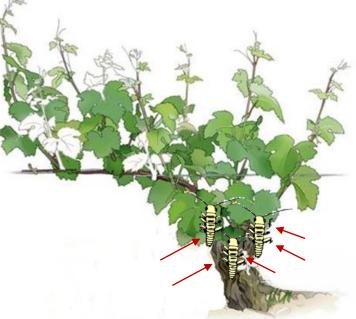
Parcelles de l'étude

Critères de choix des parcelles:

- Lutte obligatoire correctement réalisée
- Contamination chronique par la FD
- Proches de zones boisées avec vigne sauvage
- Différentes zones du vignoble savoyard
- Communes à surface viticole importante

Partie 1: Etude des populations larvaires de *Scaphoideus titanus*

Objectif:

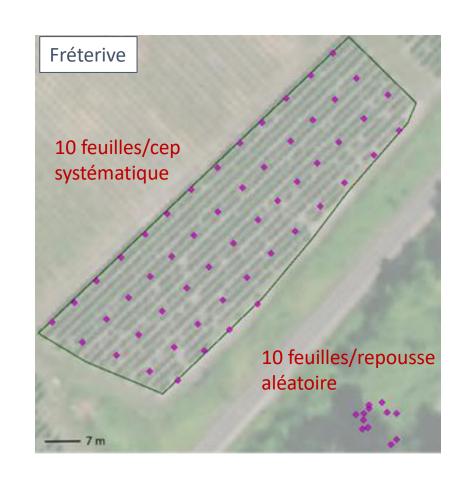

Evaluer les populations larvaires dans la vigne cultivée avant T1 Déterminer si la vigne sauvage présente des populations larvaires

Protocole:

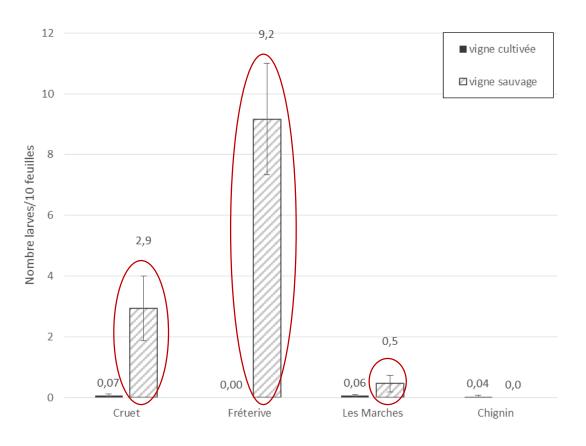
Vigne cultivée:

T1 obligatoire: du 09 au 17 juin 2018

- Stade L1-L2 peu mobiles
- → comptage visuel
- → 10 feuilles/cep
- → près du vieux bois
- Seuil de 50 ceps pour une parcelle de 3000 m2 (Lessio & Alma, 2006)
- → Calcul du nombre de ceps/parcelle
- → Echantillonnage systématique



Vigne sauvage


(Image S. Grauby, Cruet)

- → 10 feuilles retournées par repousse de vigne sauvage
- → Echantillonnage aléatoire

Résultats comptage larvaire

Nombre de larves de Scaphoideus titanus (moy ± e.s) pour 10 feuilles retournées sur vigne sauvage et vigne cultivée

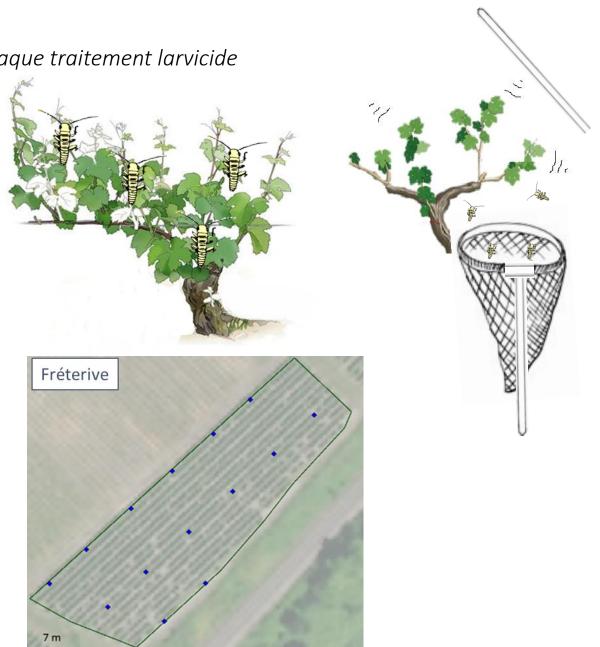
- → Vigne sauvage = Réservoir à larves de *Scaphoideus titanus*: tout cycle de développement sur vigne sauvage ?
- → Très faibles populations larvaires dans la vigne cultivée: peu de ponte en 2017: efficacité traitements?
- → Différence significative entre populations dans vigne cultivée et sauvage (pvalue < 5%)

Objectif:

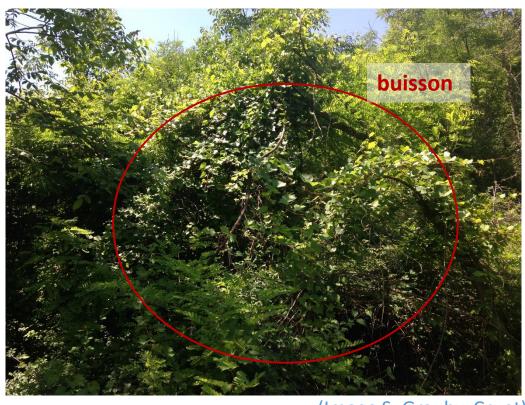
Evaluer les populations larvaires dans la vigne cultivée après chaque traitement larvicide

Evaluer les populations larvaires dans la vigne sauvage

Protocole:

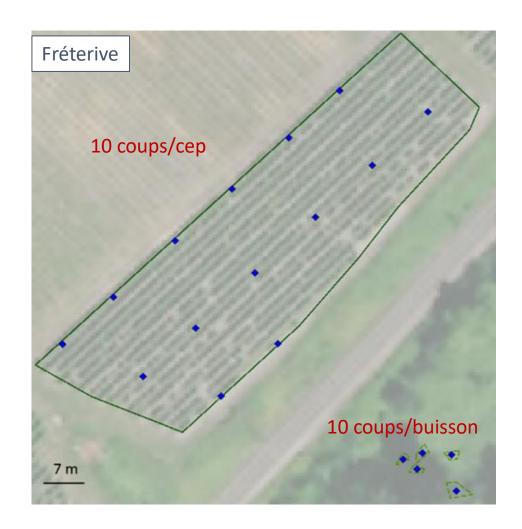

Vigne cultivée

T1 obligatoire: du 09 au 17 Juin 2018

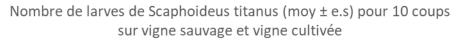

T2 obligatoire: du 23 Juin au 01 Juillet 2018

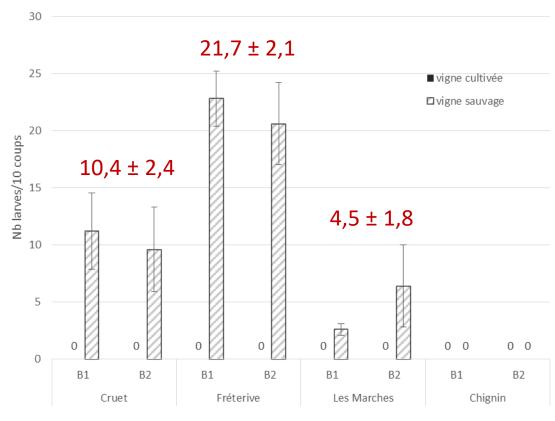
- Stades L3-L4 mobiles
- → Technique du battage
- → 10 coups/cep
- → Echantillonnage systématique
- 2 séries de battage: Battage 1 après T1

Battage 2 après T2



Vigne sauvage


(Image S. Grauby, Cruet)


- Délimitation de buissons de vigne sauvage
- → 10 coups/buisson

- Comparaison populations dans la vigne sauvage et dans la vigne cultivée -> Test de Wilcoxon
- Comparaison des deux battages

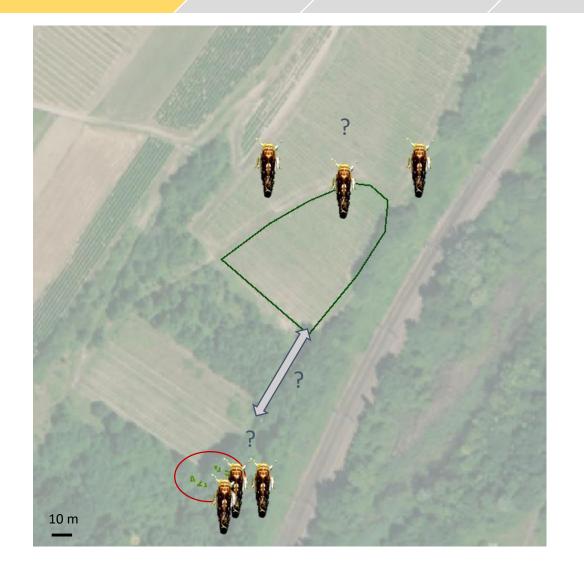
Résultats battage larvaire

- → Toujours population larvaires dans la vigne sauvage (sauf Chignin)
- → Pas de différence significative entre les 2 battages
- → Aucune larves capturées sur vigne cultivée → efficacité larvicides 2018

Présentation de la > Co Flavescence Dorée

Contexte **Etuc**

de St > S


Suivi adultes

Etude moléculaire

Etude vecteurs alternatif

Discussion

Cas de Fréterive, Cruet et les Marches

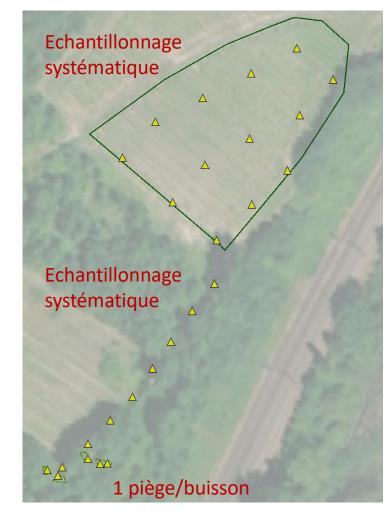
Chignin: pas de larves Pas de suivi des adultes

Partie 2: Etude des populations adultes de *Scaphoideus titanus*

Objectif:

Evaluer les populations adultes de St dans la vigne cultivée et dans la vigne sauvage Déterminer s'il y a migration de St d'un compartiment vers l'autre

Protocole:

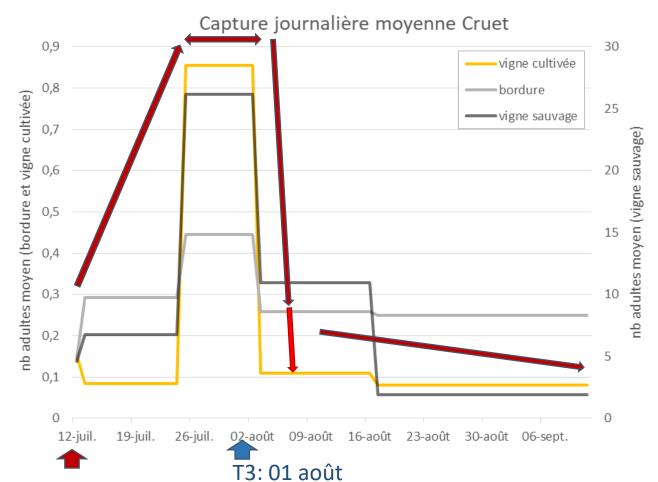

- Adulte ailé
- → Suivi grâce pièges jaunes englués
- → Pièges dans 3 compartiments:

Vigne cultivée

Vigne sauvage

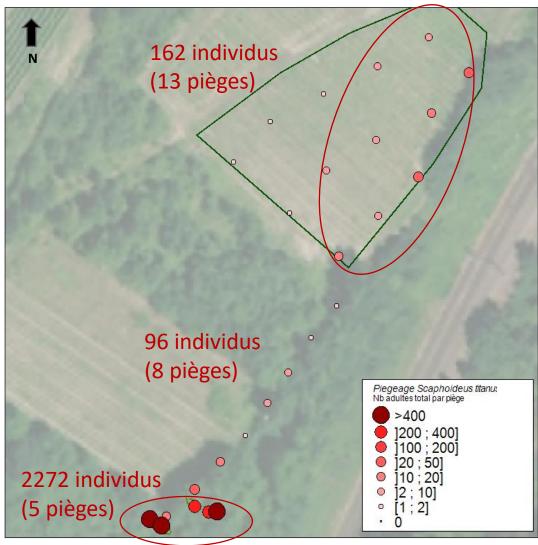
Bordure

- → Mise en place avant émergence des adultes (27/06)
- → 5 relevés du 12/07 au 11/09

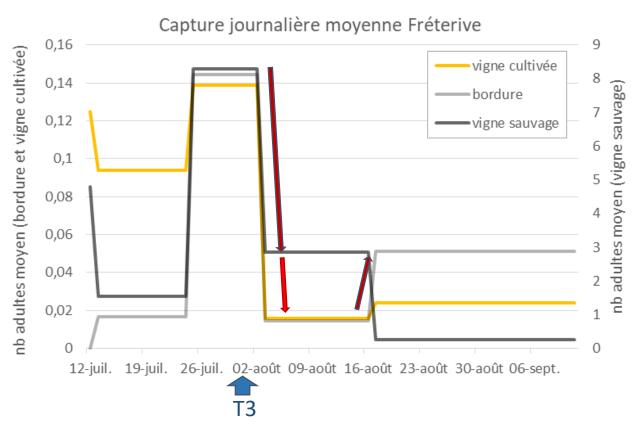


(Images S. Grauby, Cruet)

Comparaison de 3 moyennes: Kruskal-Wallis


Résultats à Cruet

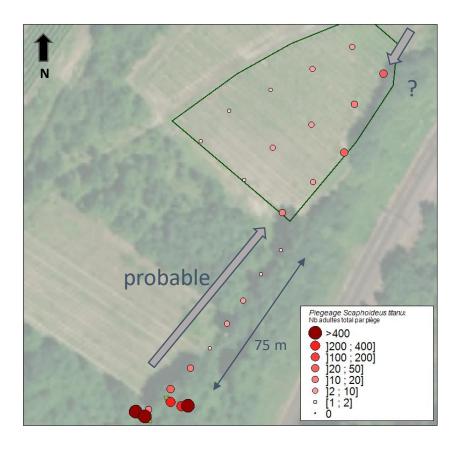
Dynamique temporelle

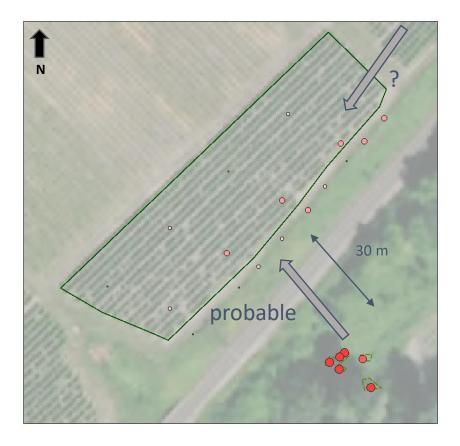


- → Courbes de vol similaires dans les 3 compartiments
- → Population adultes dans vigne sauvage très supérieures (pvalue < 5%)
- → Vol de Juillet à Septembre ~ 2mois

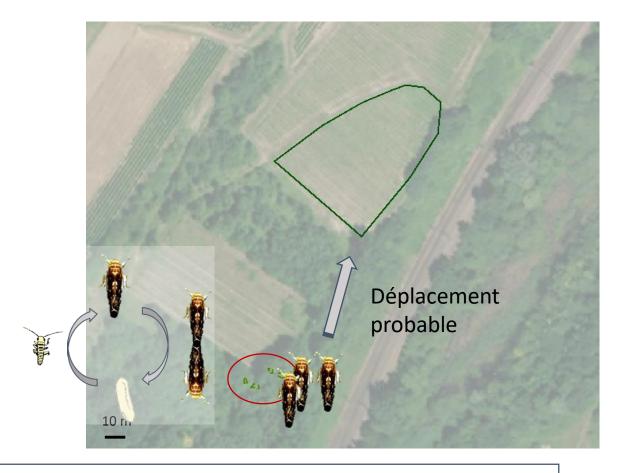
Dynamique spatiale

Résultats à Fréterive

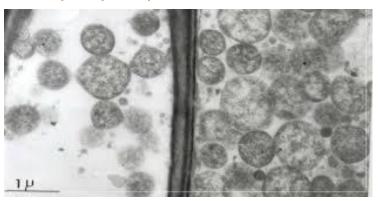



Piegeage Scaphoideus titanu: Nb adultes total par piège 1200 ; 4001 [100 ; 200] [20 ; 50] [10 ; 20] [2; 10] [1;2] 27 individus (8pièges) 839 individus (6 pièges) 28 individus (10 pièges)

- → Même observations qu'à Cruet
- → 2 différences: efficacité traitements en bordure
- + Augmentation St dans vigne cultivée et bordure fin été: Re-colonisation par le vecteur


Comptage et battage larvaire: pas de larves dans les parcelles Adultes dans les parcelles d'où proviennent-ils?

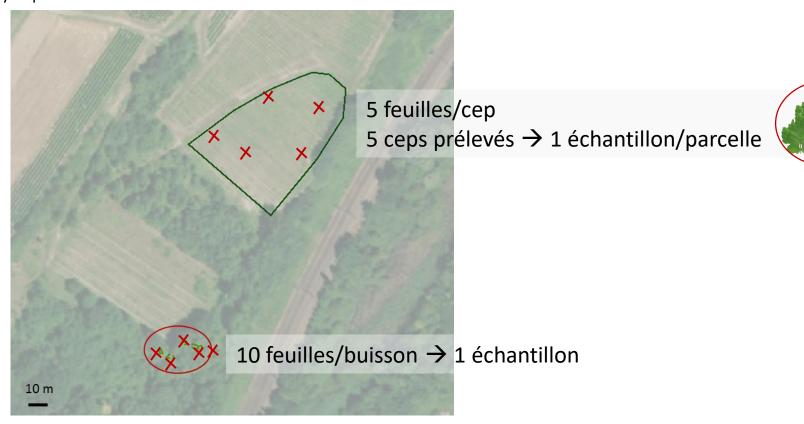
- Pas de conclusion quant aux parcelles adjacentes (pas de pièges)
- Vigne sauvage, pas de marquage des individus
- → Etude italienne: preuve déplacement de St de la vigne sauvage à la parcelle (Lessio et al. 2014)
- → 80% des individus capturés dans les 30m et individus capables de se déplacer jusqu'à 300m!



Conclusion étude de la dynamique de vol de Scaphoideus titanus adulte

- → Vigne sauvage réservoir à *Scaphoideus titanus*
- → Réalise tout son cycle de développement
- → Probable migration d'individus de la vigne sauvage à la vigne cultivée
- → La vigne sauvage est-elle un réservoir à phytoplasme de la FD?

Partie 3: Etude du phytoplasme de la FD sur le vignoble



Objectif:

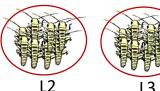
Déterminer si la vigne sauvage est un réservoir à phytoplasme Comparer la souche de phytoplasme du vignoble et celle de la vigne sauvage

Protocole

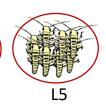
- ❖ Test de la vigne par PCR
- → Détection du gène *map* du phytoplasme de la FD

biose al

Objectif:


Déterminer si les larves présentes dans la vigne sauvage sont porteuses du phytoplasme Déterminer la souche de phytoplasme

Protocole


- ❖ Test de *Scaphoideus titanus* par PCR
- → Partenariat de R&D avec Biosellal
- → Pré-test: 2 protocoles de lyse testés (enzymatique et broyage)
- → Nombre de larves/pool testé: 3 à 10
- → Extraction d'ADN (BioExtract® column, Biosellal) +Amplification gène map (qPCR Premium® FD/BN)
- → Larves du battage 1 et 2 testées
- → Pool de larves du même stade et capturées sur le même buisson

Génotypage des échantillons FD+ pour déterminer la souche (NGS)

3-10 larves/pool

• Echantillons PCR:

	Insectes		Feuilles de vigne		
Parcelle	Battage 1	Battage 2	Vigne sauvage	Vigne cultivée	Total
Cruet	5	7	5	1	
Fréterive	15	12	5	1	
Les Marches	1	6	5	1	
Chignin	0	0	3	1	
Total	21	26	18	4	68 échantillons

- Echantillons séquençage:
- Vigne cultivée et vigne sauvage: chaque échantillon FD+
- Insectes: 1 échantillon FD+/buisson de vigne sauvage/battage

→ 16 échantillons au total

Résultats analyses moléculaires

- → Vigne sauvage réservoir à phytoplasme
- → Même souche de phytoplasme dans la vigne sauvage et la vigne cultivée
- → Même souche de phytoplasme dans *Scaphoideus titanus*
- → Contamination de l'environnement sauvage depuis la vigne cultivée par l'insecte

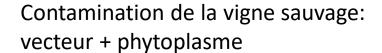
Discussion: Mesure du risque « vignes sauvages » pour le vignoble savoyard

Cas de Fréterive et les Marches

Recontamination du vignoble

Recolonisation du vignoble par le vecteur

Observation dans la parcelle:


- population importante du vecteur
- contaminations importantes en FD

Les Marches: 1257 ceps FD+/ha en 2017

Fréterive: 775 ceps FD+/ha

Cas de Cruet

2

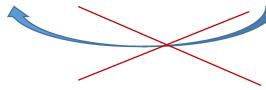
1

Recolonisation du vignoble par le vecteur

Observation dans la parcelle:

- population importante du vecteur
- contaminations faibles en FD

Cruet: 45 ceps FD+/ha en 2017


Colonisation de la vigne sauvage par le vecteur

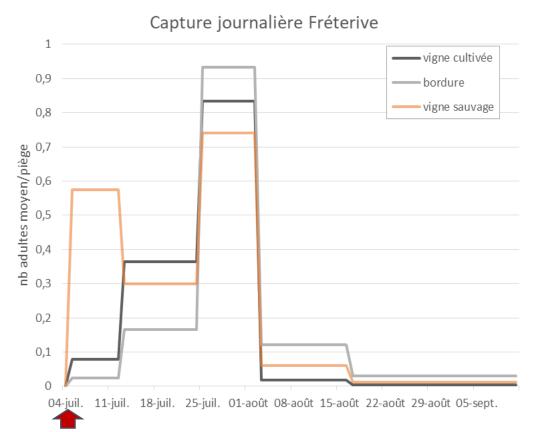
Cas de Chignin

N'exclut pas migration de St dans le temps

Partie 4: Etude des vecteurs alternatifs de la FD sur le vignoble

Orientus ishidae

Japananus hyalinus


Famille: Cicadellidae Origine asiatique

Résultats captures *Orientus ishidae (Oi)*

- Capable de transmettre FD à la vigne (Lessio et al 2016) Vecteur confirmé
- Porteur de plusieurs souches (FD1, FD2, FD3) (Casati et al 2017)
- Polyphage (aulne, noisetier, noyer, etc.)

Dynamique temporelle

- → Capture homogène dans les 3 compartiments = polyphage
- → Cycle biologique de *Orientus ishidae* similaire à celui de St Émergence précoce des adultes

Résultats captures *Orientus ishidae*

Dynamique spatiale (Fréterive)

- → 4 fois plus d'Oi que de St dans la parcelle et en bordure : inefficacité traitement insecticides sur ce vecteur ?
- → Quel est le rôle de *Oi* dans l'épidémie de FD ?

<u>Perspectives</u>: Test PCR + séquençage + Identification des végétaux

Résultats captures Japananus hyalinus (Jh)

- Retrouvé FD+ (Trivellone *et al* 2016)
- Capacité de transmission du phytoplasme à la vigne reste à prouver
- → Vecteur potentiel

Dynamique spatiale

- → 3 fois plus de Jh dans la parcelle que St: inefficacité traitement insecticides ?
- → Répartition homogène dans les 3 compartiments: polyphage

<u>Perspectives</u>: essais de transmissions FD à la vigne PCR + séquençage pour déterminer souches de phytoplasmes

- Vigne sauvage = danger pour le vignoble
- → Peuvent expliquer certains échecs de lutte en Savoie
- → Importance de l'intégrer dans le plan de lutte contre la FD (géo-référencement, journées d'action, préconisations techniques)
- Importance de la connaissance précise du cycle biologique de *Scaphoideus titanus*
- → Utilisation combinée de techniques pour suivre les différents stades de développement de l'insecte
- → Augmenter l'efficacité des traitements voir les diminuer
- Ecologie de la Flavescence Dorée est un système ouvert en interaction avec le paysage environnant (Casati et al 2017)
- → Composition du paysage détermine le type de plantes hôtes et le type de vecteurs
- → Besoin d'outils d'analyse du paysage et d'évaluation des risques

Références bibliographiques

- CASATI, P., JERMINI, M., QUAGLINO, F., CORBANI, G., SCHAERER, S., PASSERA, A., BIANCO, P.A., RIGAMONTI, I.E., 2017. News
 insights on Flavescence dorée phytoplasma ecology in the vineyard agro-ecosystem in southern Switzerland. *Annals of Applied Biology*, 1-15.
- CAUDWELL, A., 1964. Identification d'une nouvelle maladie à virus de la vigne, la « Flavescence dorée ». Etude des phénomènes de localisation des symptômes et de rétablissement. *Annales des Epiphyties*. Vol. 15, p. 193.
- CHUCHE, Julien, 2010. Comportement de Schaphoideus titanus, conséquences spatiales et démographique. Thèse de doctorat.
 Œnologie. Université de Bordeaux 2.
- BEANLAND, L., NOBLE, R., WOLF, T.K., 2006. Spatial and temporal distribution of North American grapevine yellows disease and
 of potential vectors of the causal phytoplasmas in Virginia. *Environmental Entomology*. Vol. 35, p. 332-344.
- LESSIO, F., ALMA, A., 2006. Spatial distribution of nymphs of *Schaphoideus titanus* (Homoptera: Cicadellidae) in grapes, and evaluation of sequential sampling plans. *Journal of Economic Entomology*. Vol. 99, p. 578-582.
- LESSIO, F., TEDESCHI, R., ALMA, A., 2007. Presence of *Schaphoideus titanus* on American grapevine in woodlands, and infection with "flavescence doree" phytoplasmas. *Bulletin of Insectology*. Vol. 60, p. 373-374.
- LESSIO, F., TOTA, F., ALMA, A., 2014. Tracking the dispersion of *Scaphoideus titanus* Ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: use of a novel mark–capture technique. *Bulletin of Entomological Research*. p. 1-12.
- PAVAN, F., MORI, N., BIGOT, G., ZANDIGIACOMO, P., 2012. Border effect in spatial distribution of Flavescence dorée affected grapevines and outside source of *Scaphoideus titanus* vectors. *Bulletin of Insectology*. Vol. 65, p. 281-290.
- VIDANO, C., 1964.- Scoperta in Italia dello Scaphoideus littoralis Ball, cicalina americana collegata alla "flavescence dorée" della vite. L'Italia agricola. Vol. 10, p. 1031-1049.